

Machine learning approaches for predicting NACE activity codes of Hungarian business entities

Gergo Bence Mamuzsics

National Tax and Customs Administration of Hungary

Data Science Department

Email: mamuzsics.gergo_bence@nav.gov.hu

December 3, 2025

Presentation overview

1. Introduction

- Motivation
- Data mining goal

2. Data understanding

- data domains, EDA

3. Data preparation

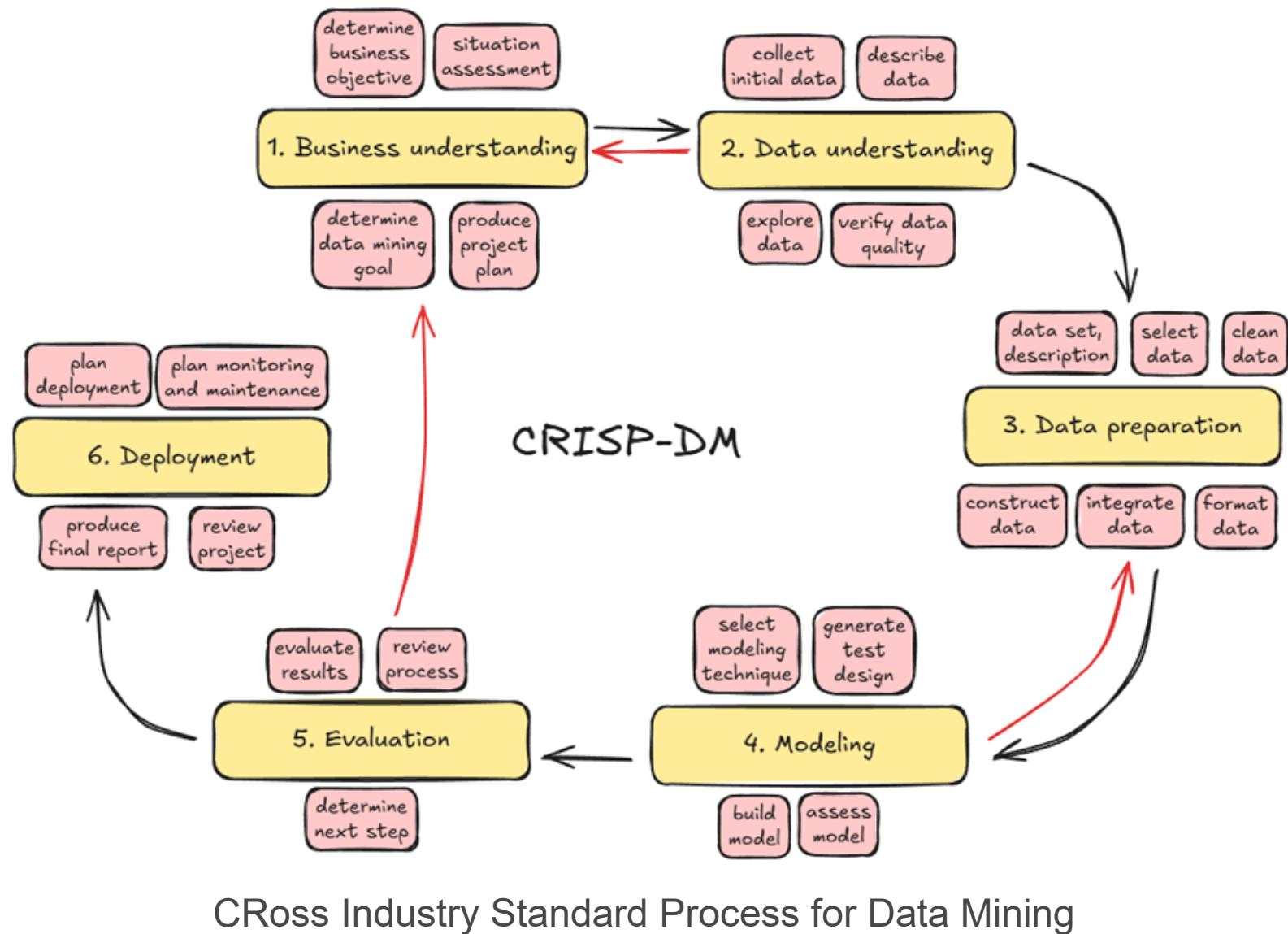
- handling missing data
- transformations

4. Modelling

- cross-validation, metrics
- experiments: MNB, NCC, MLP

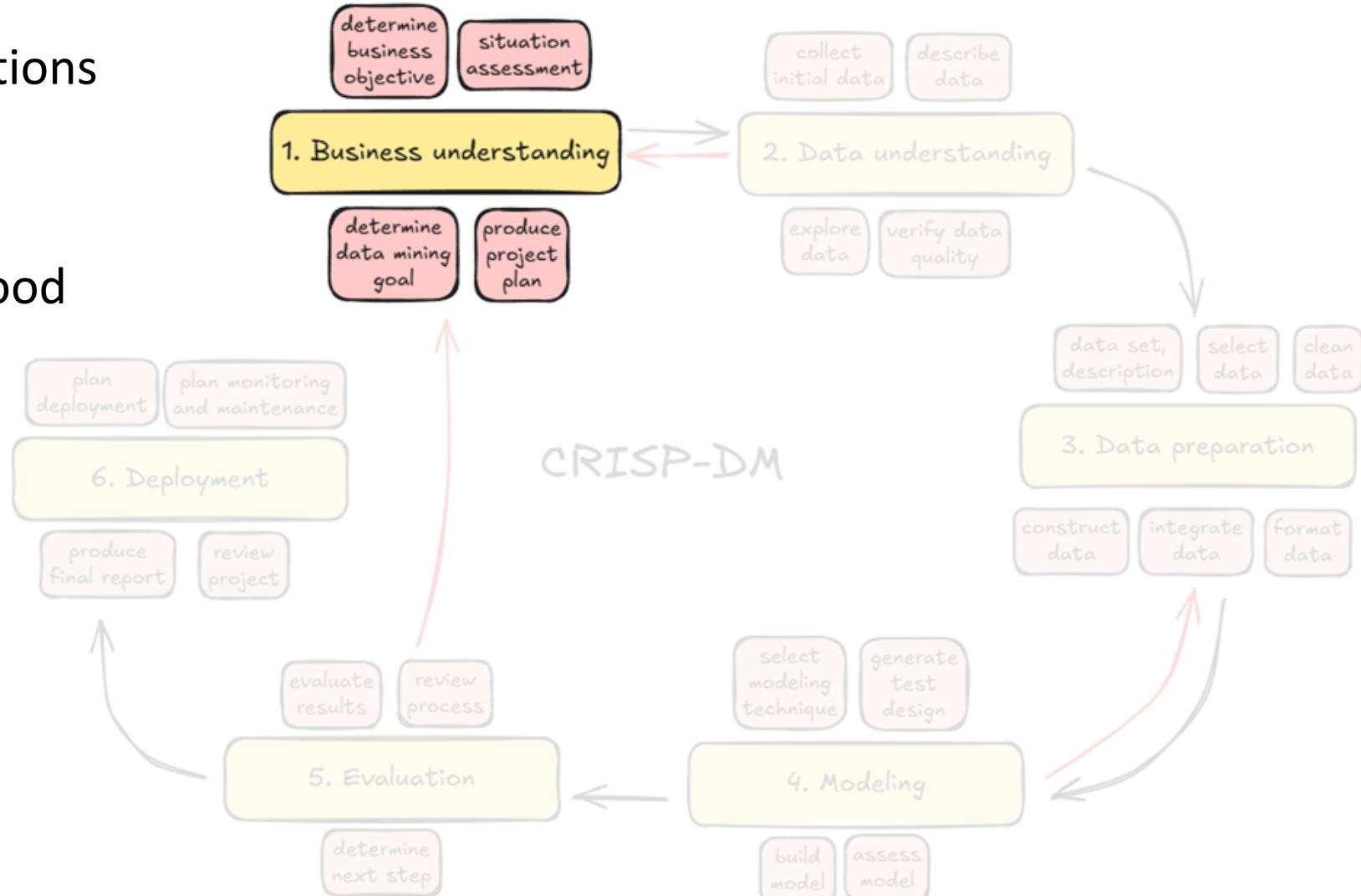
5. Evaluation

6. Deployment



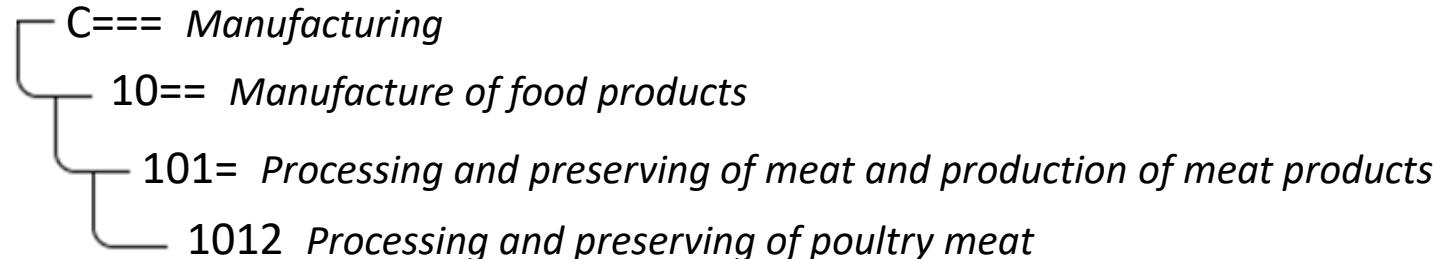
1. Introduction

- AI use in EU tax administrations
- Why activity–declaration mismatch matters
- Consequences of lacking good estimation tools
- Motivation for the project



The NACE codes

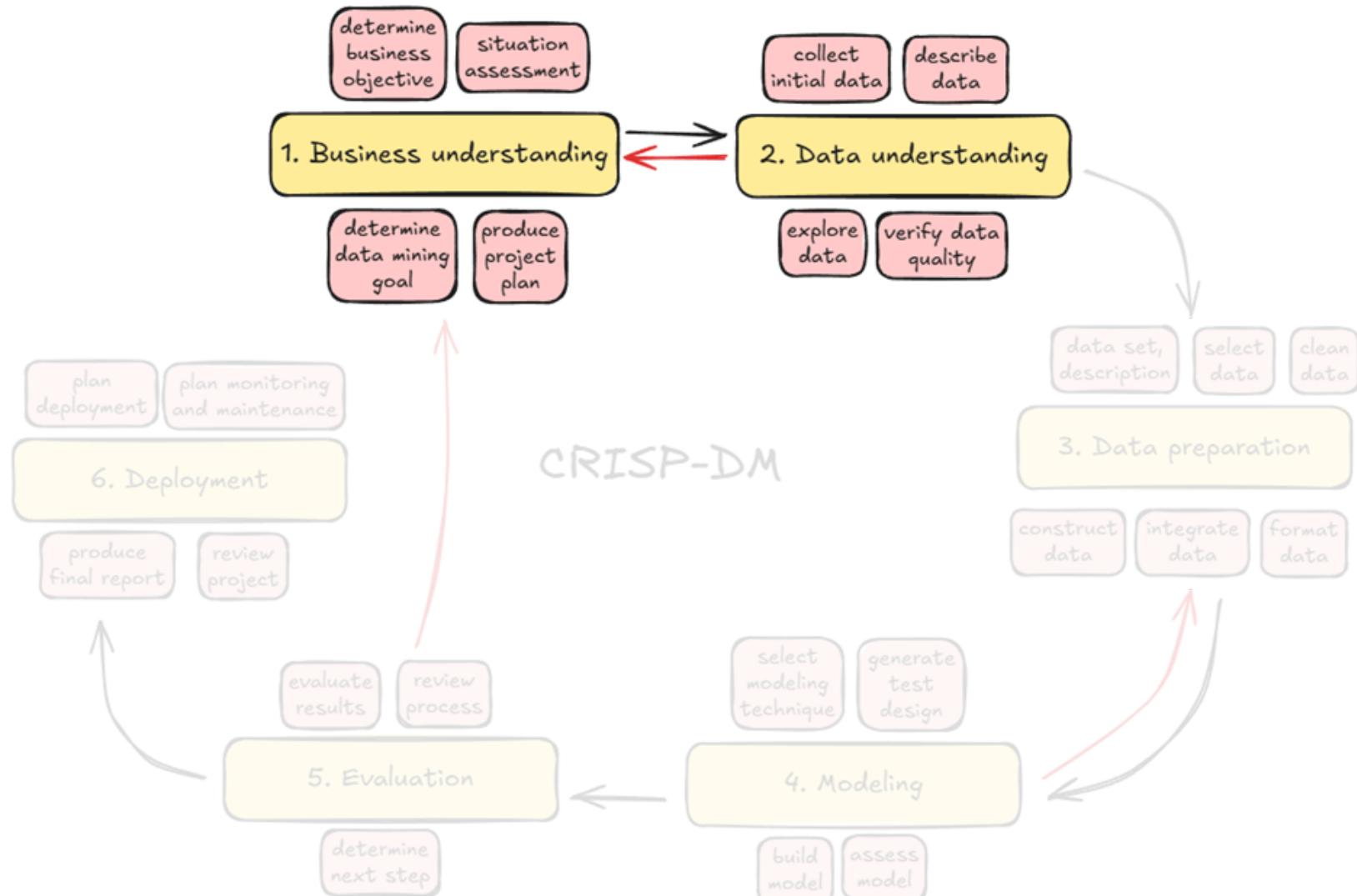
- Statistical Classification of Economic Activities in the European Community
- updated in 2008 and 2025
- 4 levels of hierarchy:
 - (1) section
 - (2) group
 - (3) division
 - (4) class
- main activity is mandatory at company registration
- importance:
 - statistical data collection
 - tax assessment
- **research goal:** building a sufficiently effective classification model for NACE classes



```
graph TD; C["C== Manufacturing"] --> 10["10== Manufacture of food products"]; 10 --> 101["101= Processing and preserving of meat and production of meat products"]; 101 --> 1012["1012 Processing and preserving of poultry meat"]
```

The diagram illustrates the 4-level hierarchy of NACE codes for meat processing. Level 1: C== Manufacturing. Level 2: 10== Manufacture of food products. Level 3: 101= Processing and preserving of meat and production of meat products. Level 4: 1012 Processing and preserving of poultry meat.

2. Data understanding



a) Overview of the data domains:

F - FEOR

I - INPUT

O - OUTPUT

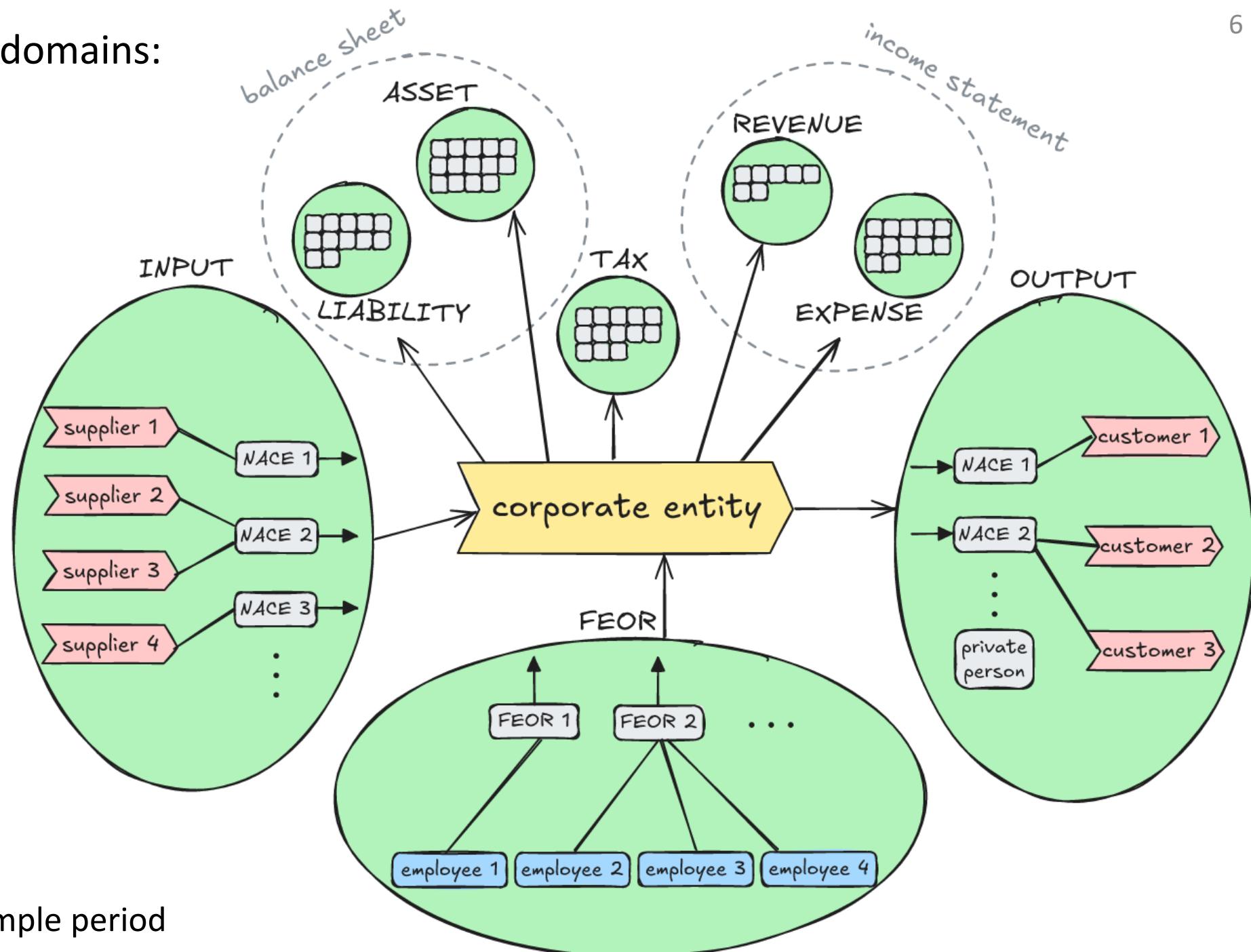
A - ASSET

L - LIABILITY

R - REVENUE

E - EXPENSE

T - TAX



b) Target variable:

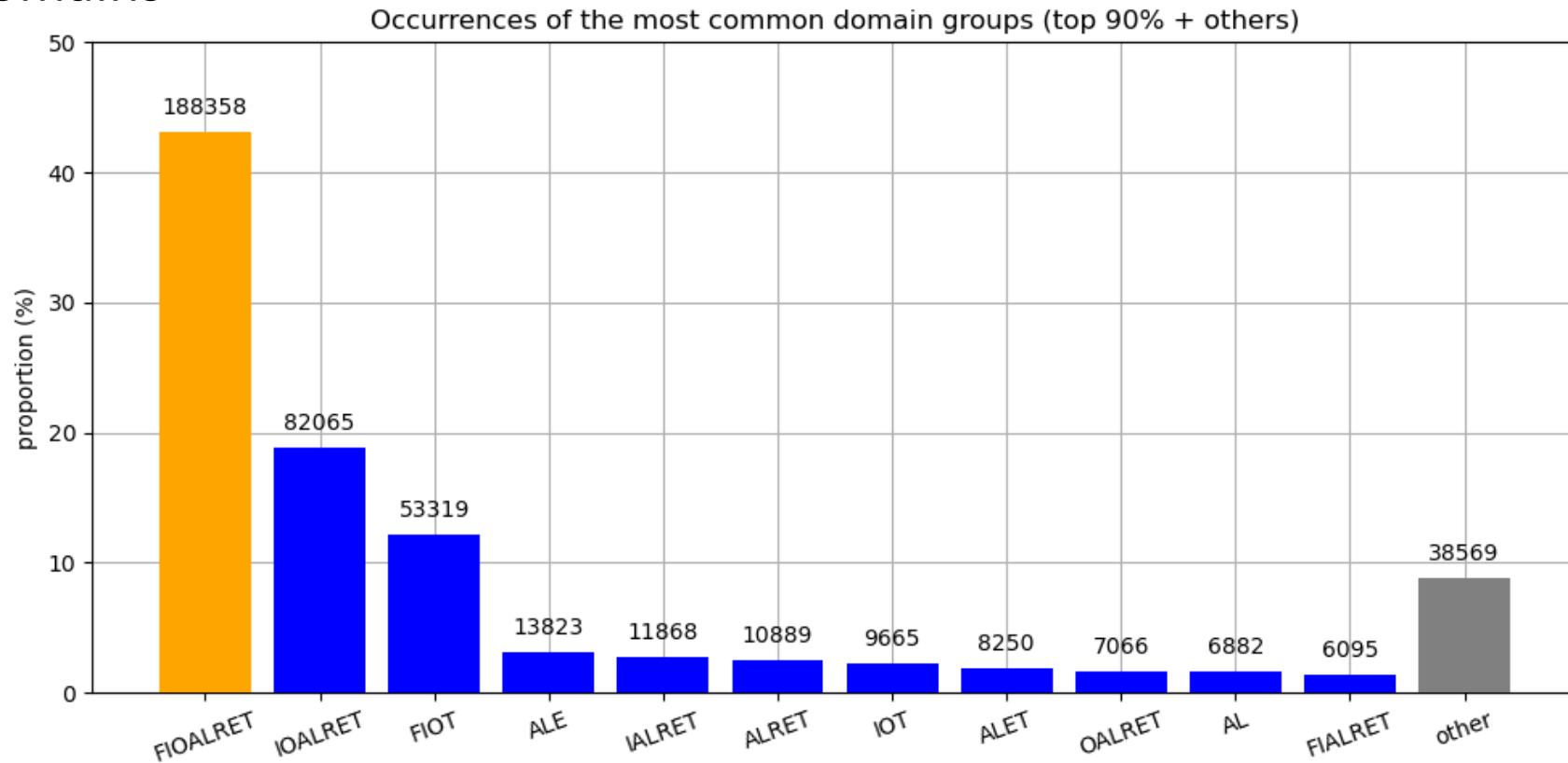
4-digit code of the main activity

- considering noise factors

c) Data exploration - example period

EDA – Data availability of the domains

Domain	Unique Taxpayers
FEOR	261,596
INPUT	371,002
OUTPUT	352,429
ASSET	360,135
LIABILITY	361,441
REVENUE	312,316
EXPENSE	349,918
TAX	405,272
Total (any domain)	436,849

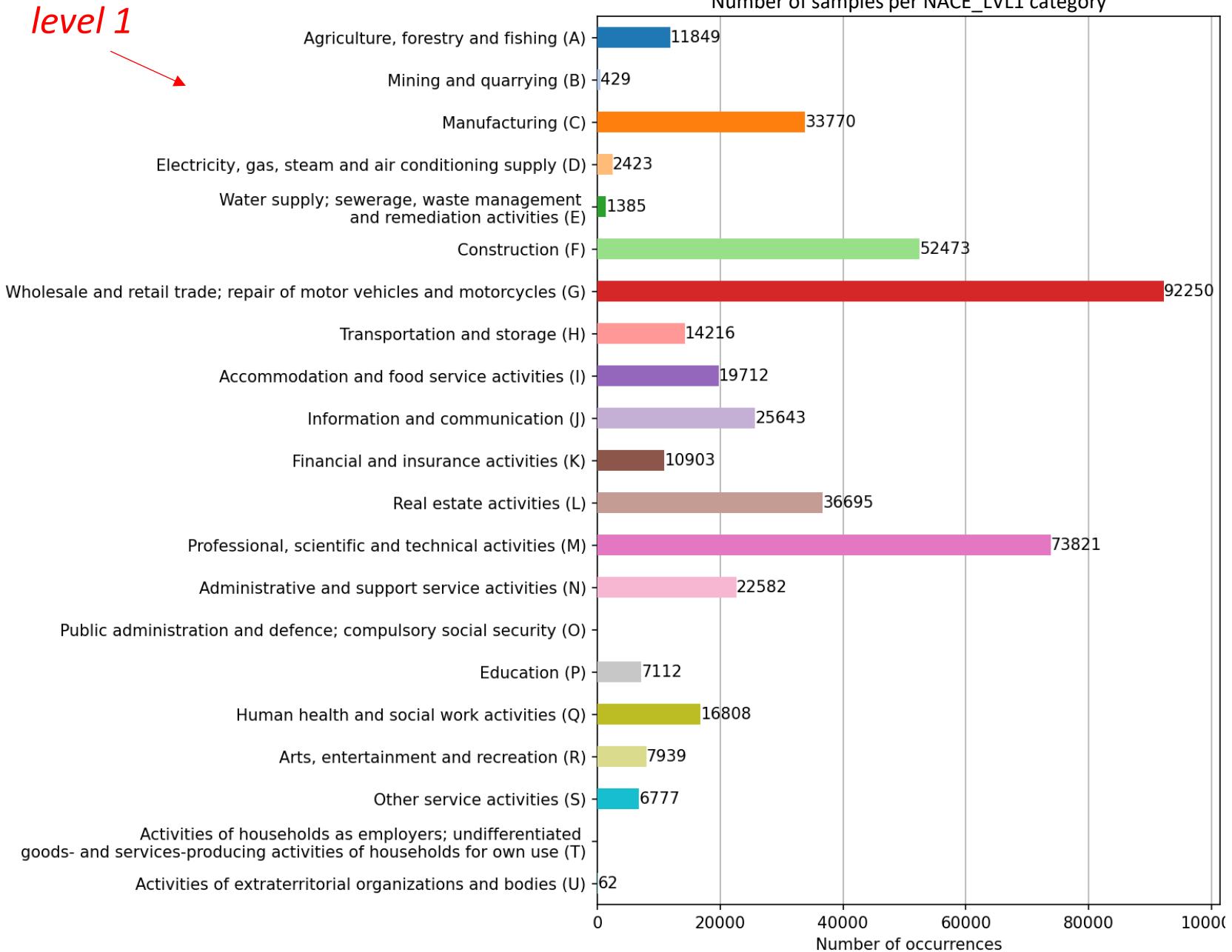


EDA – Domain features

- features are sparse in some domains
- high dimensionality of F,I,O
- orders of magnitude differences in values
- low to moderate correlations between the features

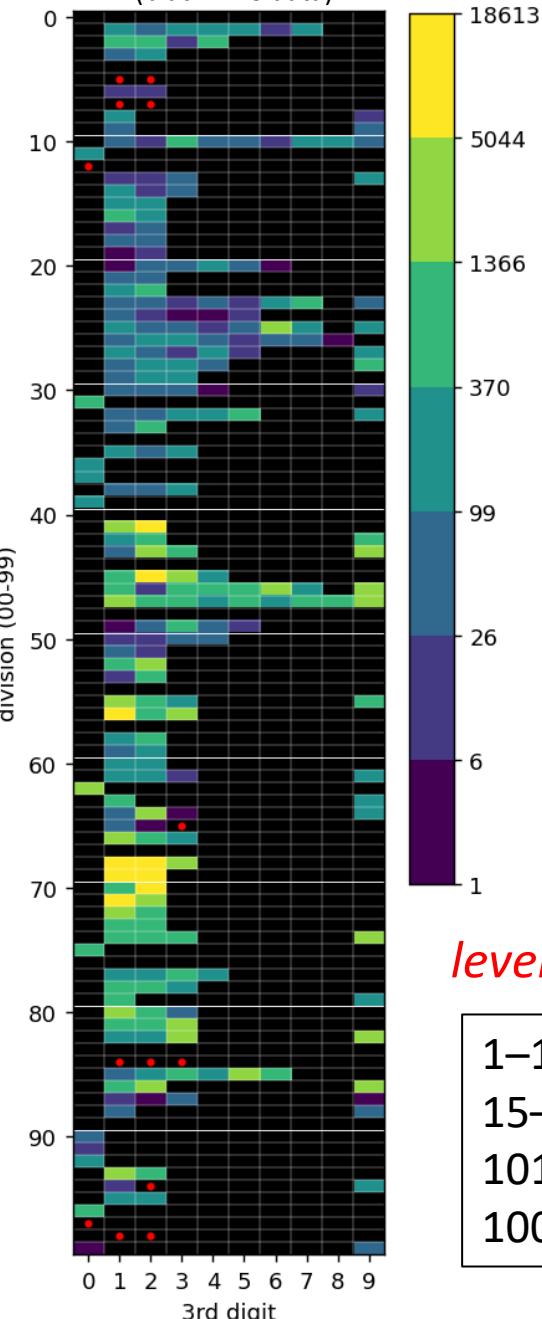
Domain	Non-Zero Proportion
FEOR	0.62%
INPUT	5.40%
OUTPUT	1.94%
ASSET	42.86%
LIABILITY	33.33%
REVENUE	14.29%
EXPENSE	66.67%
TAX	30.77%

EDA – NACE frequencies



level 3 →

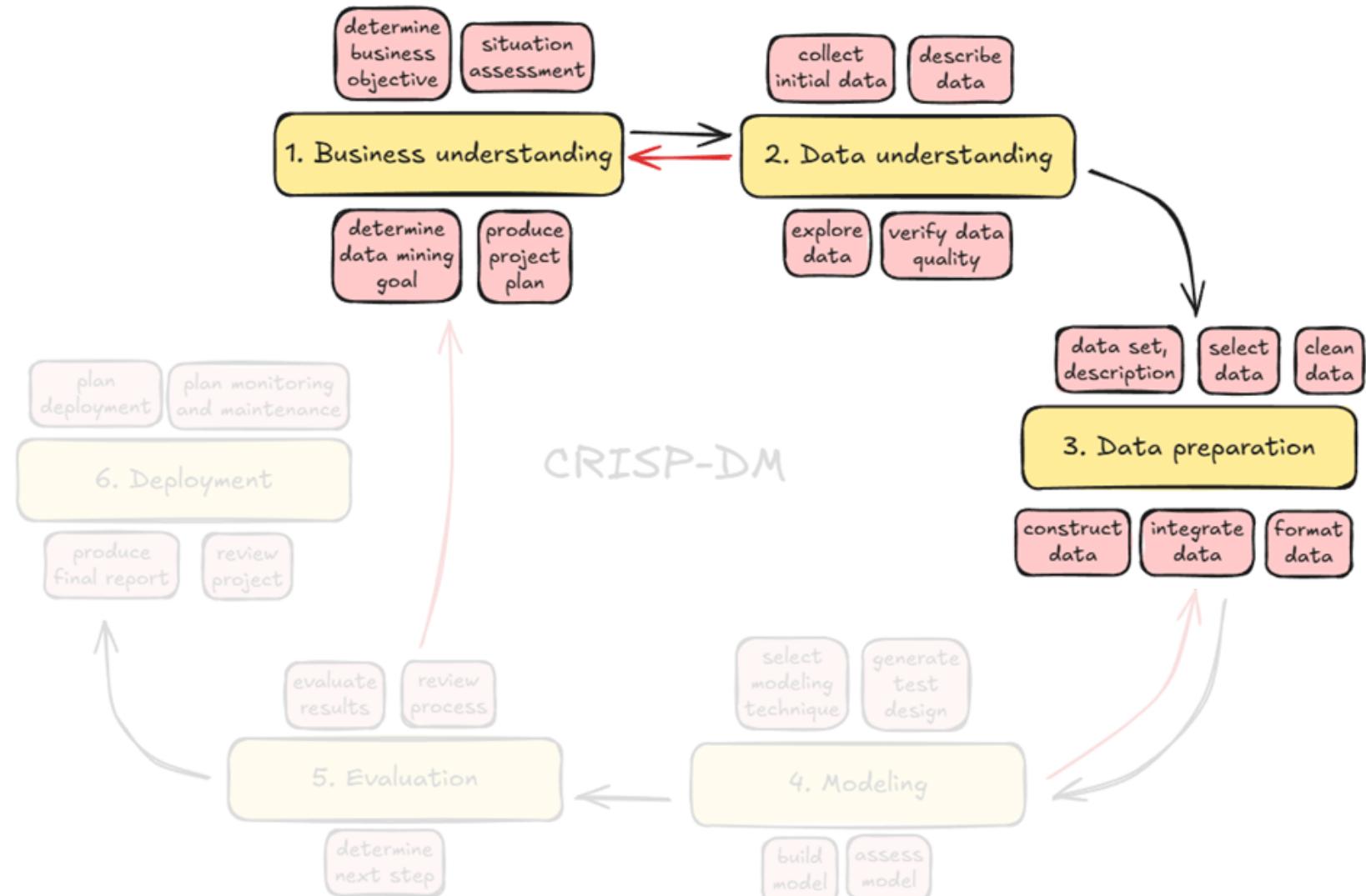
Logarithmic heatmap of 3-digit NACE occurrences (black = no data)



level 4 →

1–14: 15%
15–100: 28%
101–1000: 41%
1001–18,614: 16%

2. Data preparation

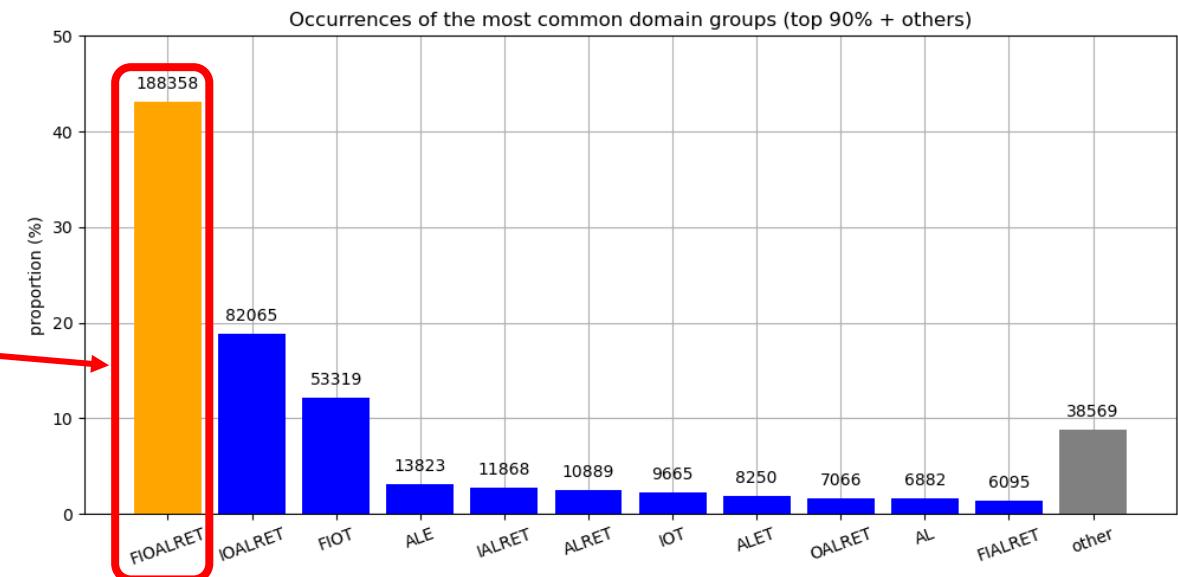


1) Handling missing data

- we want to compare per-domain model efficiencies on the same set of taxpayers
- for this purpose now we only use taxpayers having data in all the 8 domains

samples: 436,849 → 188,358

classes: 590 → 572



2) Handling rare categories

- only using NACE classes with at least 15 samples

samples: 188,358 → 187,610

classes: 572 → 457

3) Treating high dimensionality

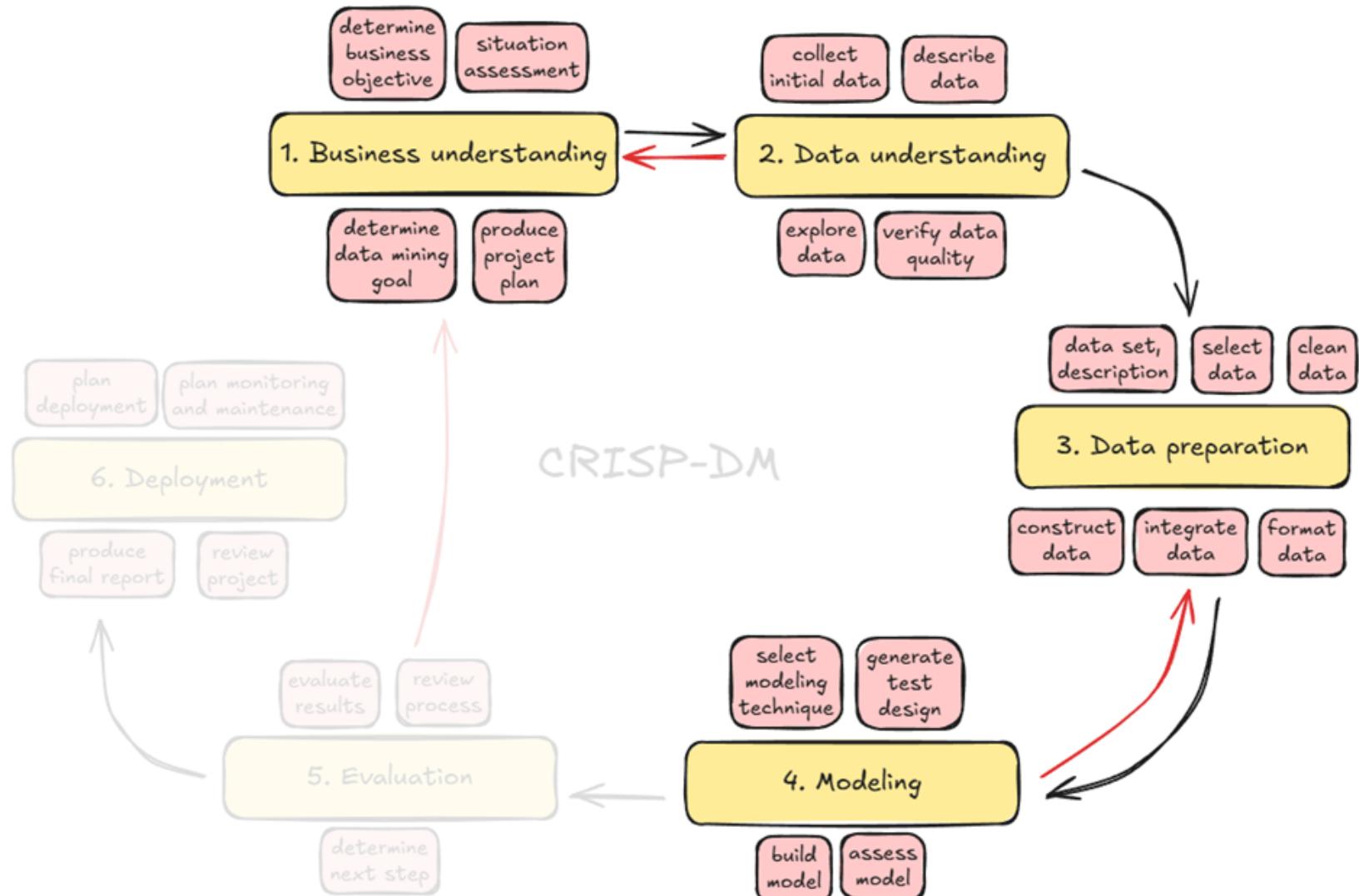
- feature selection/extraction trials:
 - aggregating hierarchical domains (F,I,O)
 - PCA, t-SNE
- modelling choices:
 - cosine distance for NCC (Nearest Centroid Classif.)
 - tolerant models, e.g. MNB (Multinom. Naive Bayes)

4) Handling the order-of-magnitude differences

- $\log(x+1)$
- L1 normalization
 - a) + Centered Log-Ratio transformation (CLR)
 - b) + Feature Standardization (FS)

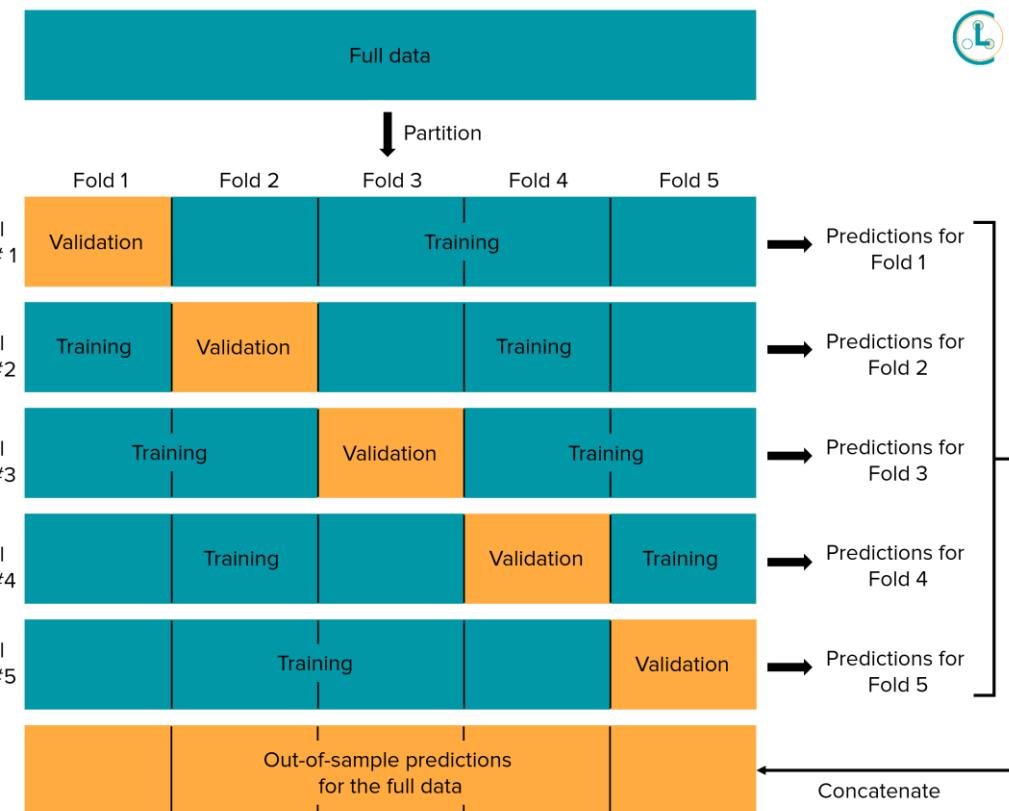
3. Modelling

- Train-validation strategy
- Evaluation metrics
- Classification models
 1. Multinomial Naive Bayes
 2. Nearest Centroid Classifier
 3. Multi-Layer Perceptron
- Results
 - domains separately
 - multi-domain performances



- Train-validation strategy:
 - **stratified 5-fold cross-validation (fixed folds)**
 - no separate test set at this stage
 - more samples remain
 - only limited hyperparam trials accepted
 - *final tests are conducted on a different period*
- Evaluation metrics:
 - **„characteristic rank quartile“ (CRQ)**
 - definition: 3rd quartile of intra-class rank medians
 - focuses on balanced class-level prediction quality
 - uses only the ranks, not the specific predicted values
 - easy to interpret (e.g. CRQ = 6.0)
 - **balanced categorical cross-entropy loss (CCE)**
 - differentiable
 - aligns sufficiently well with CRQ
 - outlook: hierarchical variant could be implemented

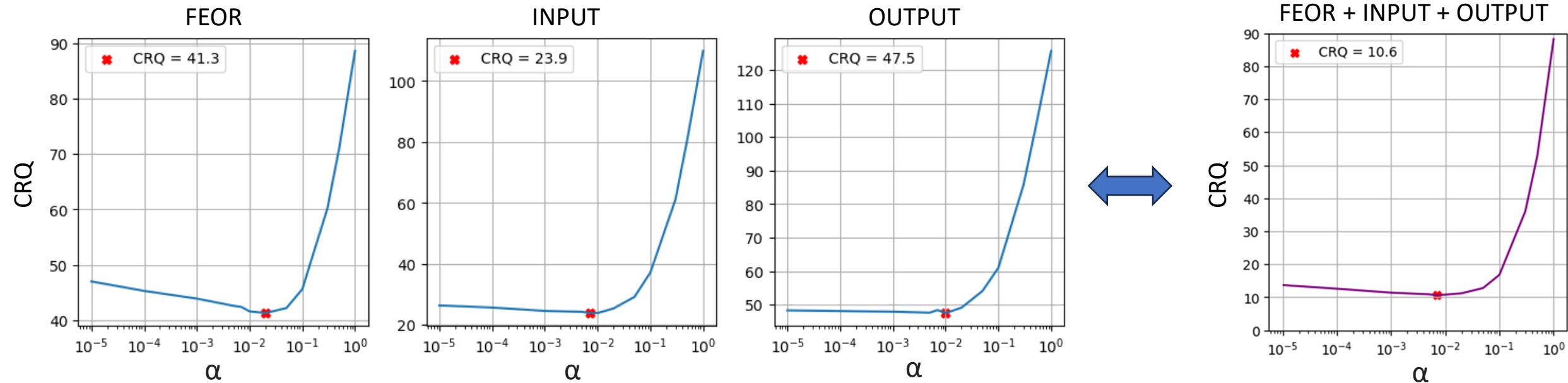
https://docs.cleanlab.ai/v2.7.0/tutorials/pred_probs_cross_val.html



1. Multinomial Naive Bayes (MNB) CRQ: 9.0

- assumes independent features
- simple, fast and scalable
- works well with high-dimensional sparse datasets
- 1 tunable parameter: $\alpha > 0$
- tuning e.g.:

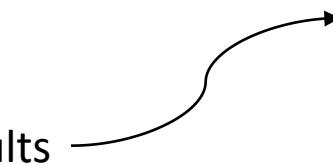
Combined domains are much more powerful than separate ones!



2. Nearest Centroid Classifier (NCC) CRQ: 11.0

- Assumption:
 - samples of each class are centered around a single point (the class centroid) in the feature space
 - points belonging to a class are closer to that class's centroid than to any other
- easy to interpret, fast, scalable
- Steps:
 1. calculating class centroids (train data)
 2. calculating distances (test data vs. centroids)

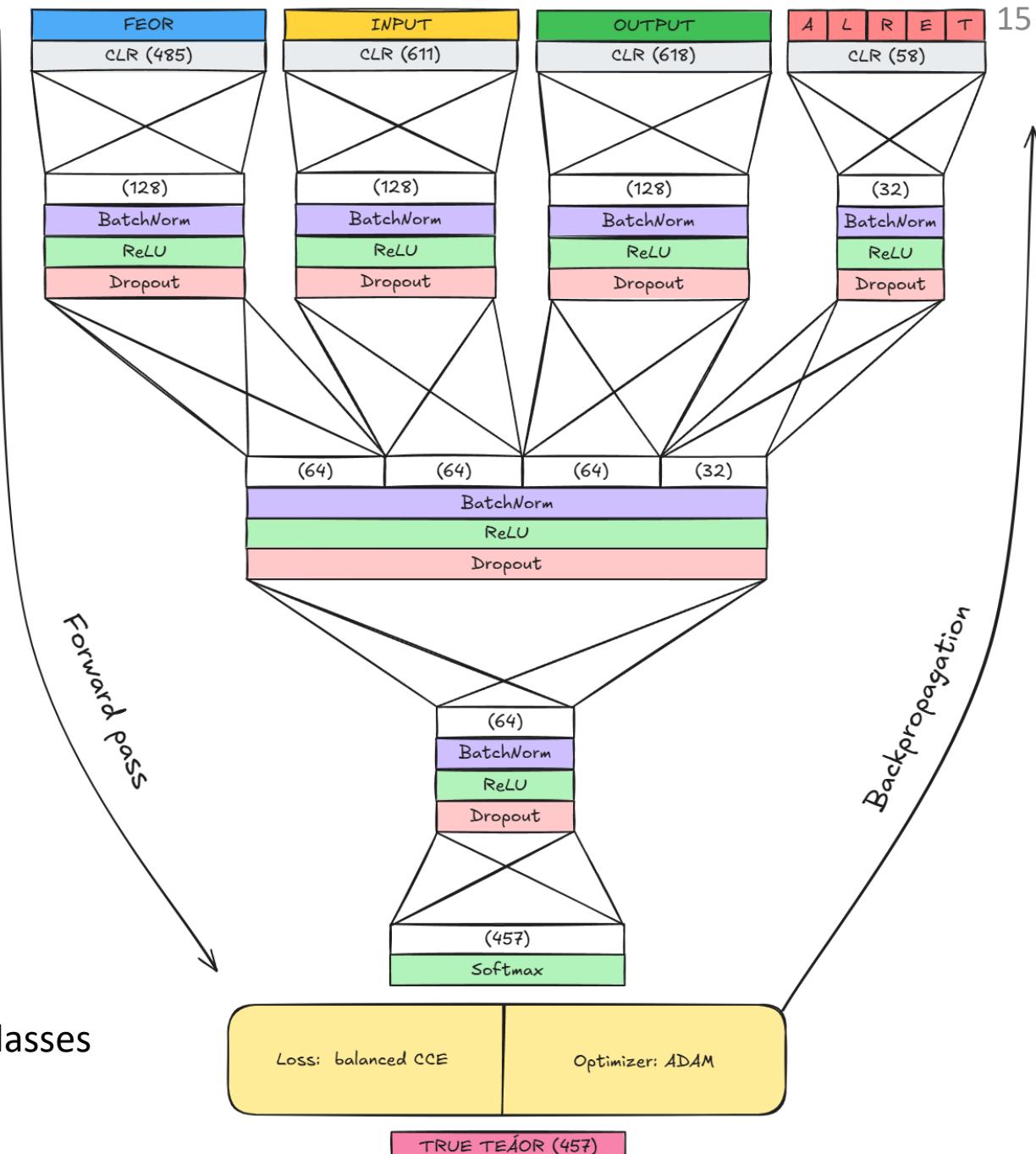
gridsearch results



	F	I	O	A	L	R	E	T	
preproc	L1								
centroid	L1 + CLR		X	X	X	X			
distance	L1 + FS	X					X		
	L1 + CLR + FS							X	
preproc	Euclidean		X	X	X	X	X		
centroid	directional	X					X	X	
distance	Euclidean				X	X		X	
	cosine	X	X	X			X	X	
CRQ		36	15	27	117	170	188	109	148

3. MultiLayer Perceptron (MLP) CRQ: 8.0

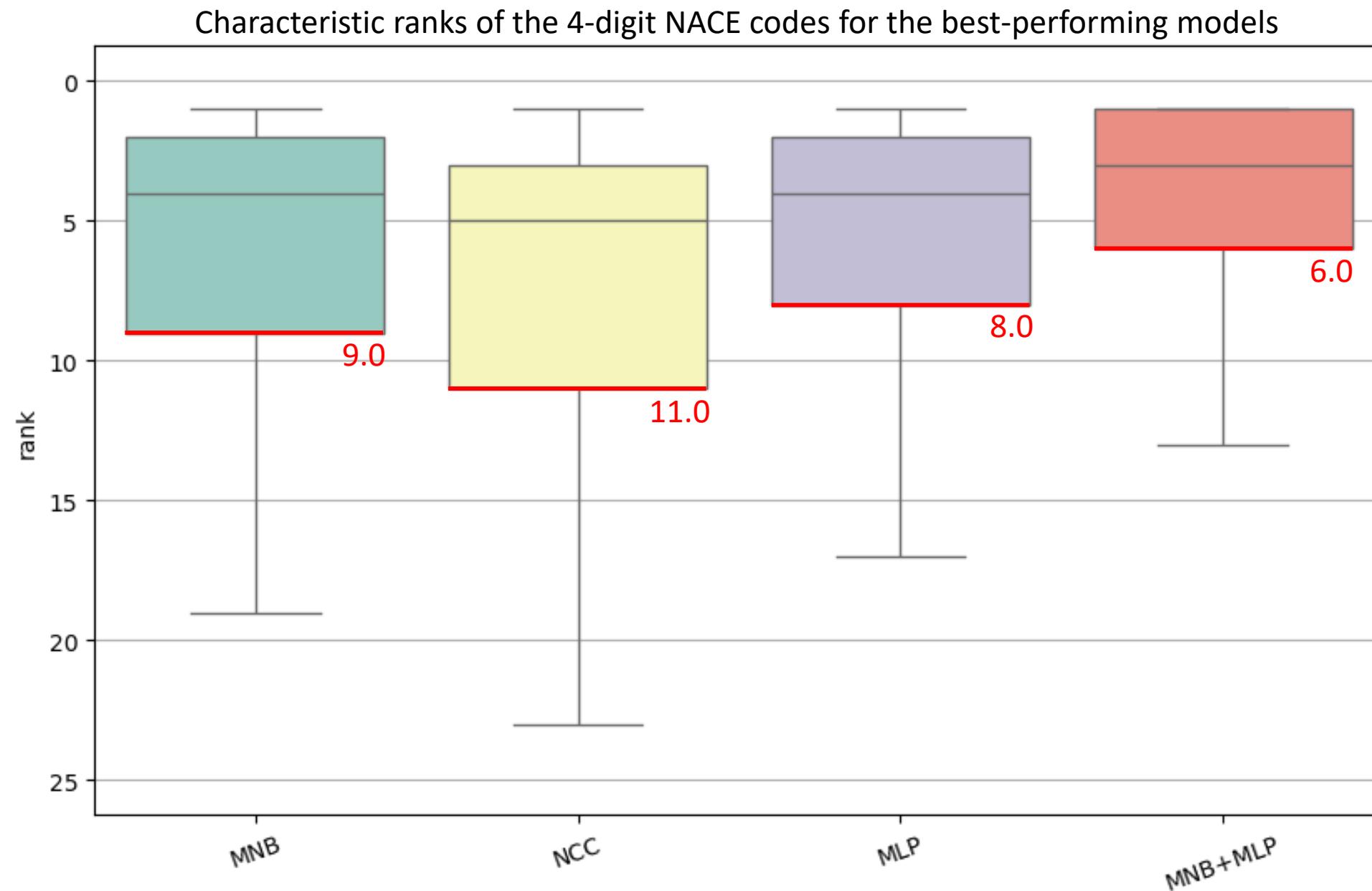
- Training setup
 - Domains trained individually first
 - Combined training leveraged MLP flexibility
- Best-performing architecture
 1. Separate preprocessing for each domain
 2. Branches: F, I, O, ALRET (merged)
 3. Two dense layers per domain branch
 4. Embeddings concatenated
 5. Two additional dense layers applied
 6. Softmax outputs NACE probabilities
- Key components
 - BatchNorm + ADAM → faster convergence
 - ReLU → nonlinear relationships
 - Dropout → reduced overfitting
 - Balanced categorical cross-entropy → equality for rare classes



Per-domain CRQ results:

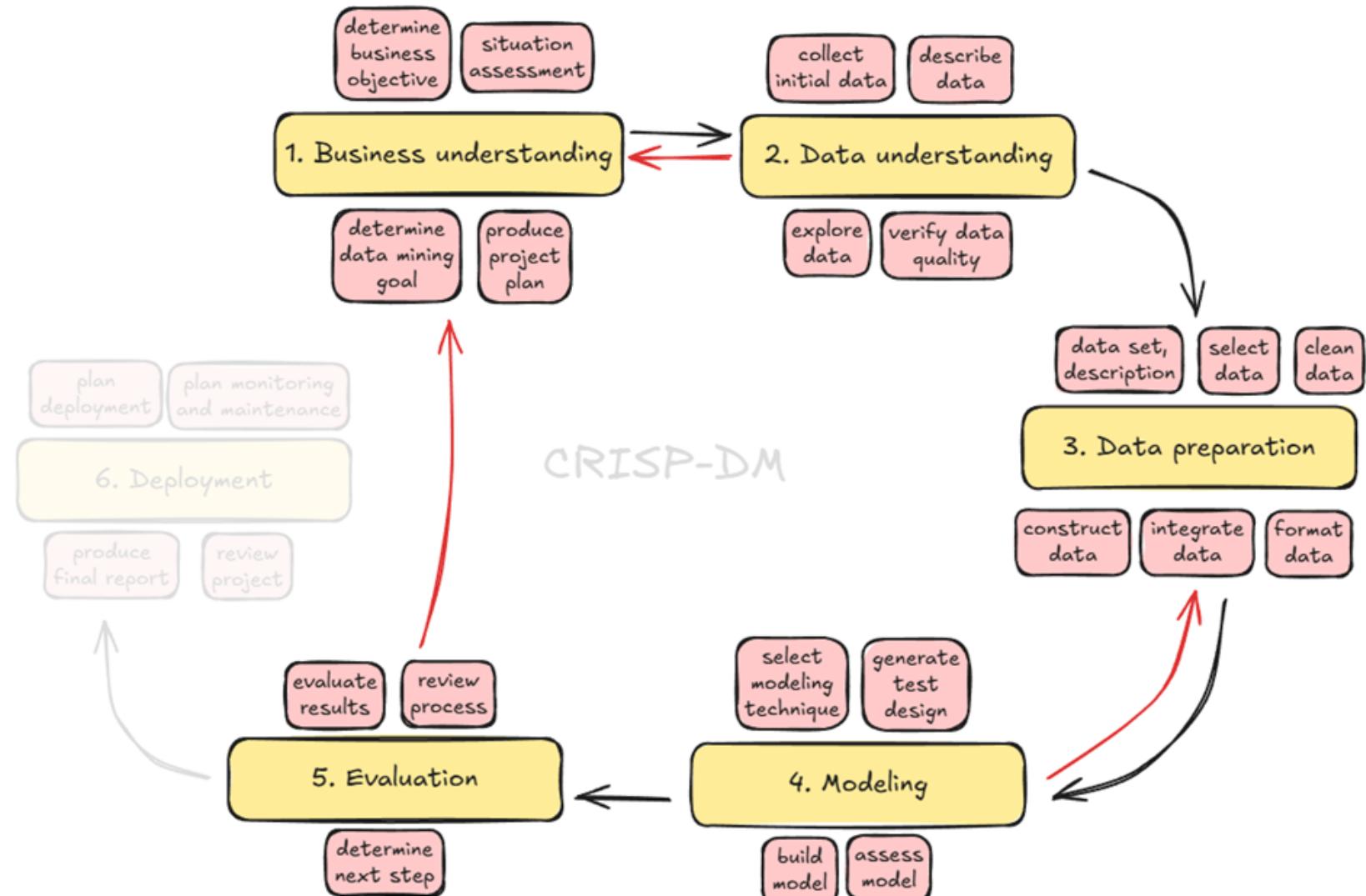
Model	F	I	O	A	L	R	E	T
MLP	34.0	18.0	25.0	106.0	160.5	189.5	88.0	126.0
NCC	36.0	15.0	27.5	117.0	170.0	188.0	109.0	148.0
MNB	41.3	23.9	47.5	132.0	180.0	298.0	126.0	188.0

Multi-domain model results:



4. Evaluation

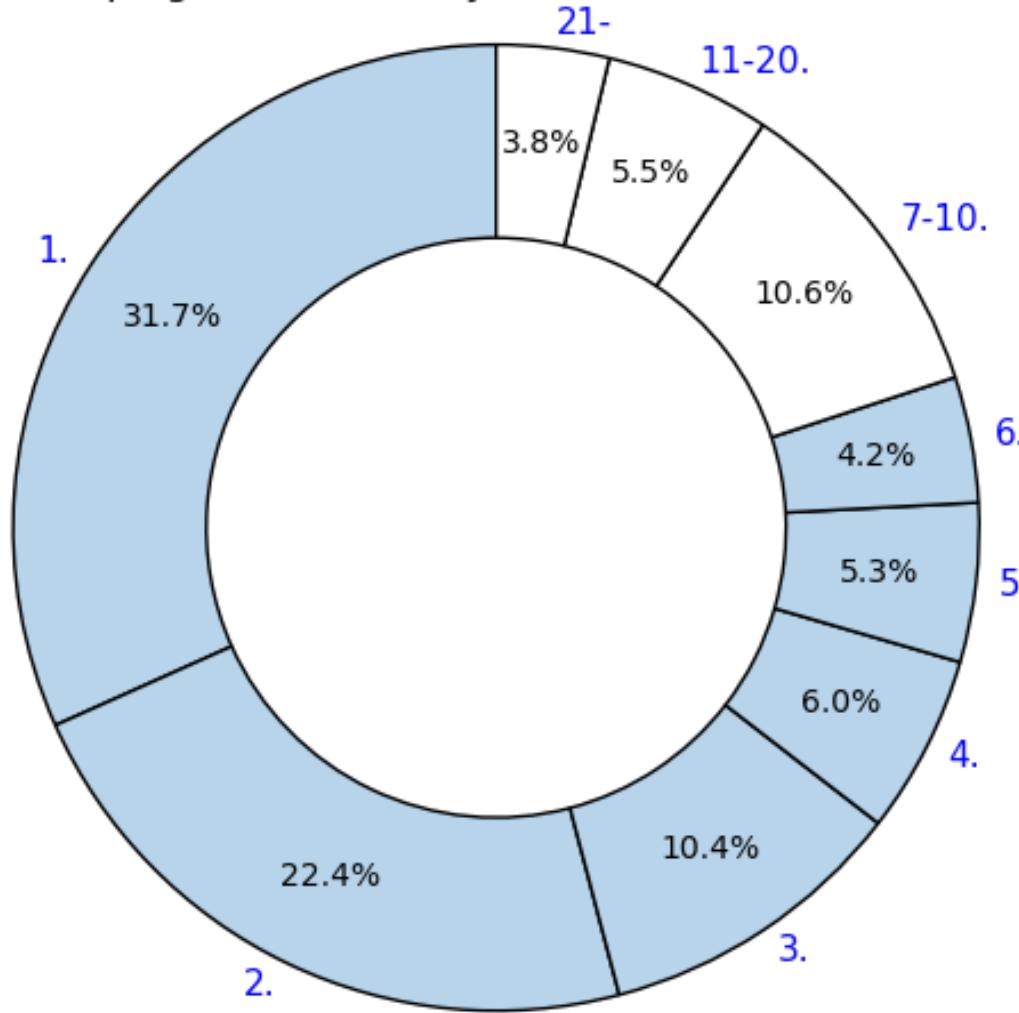
- Upgraded MLP
- Evaluation period:
2024-01-01 – 2025-07-04



TEÁOR-focused ranks

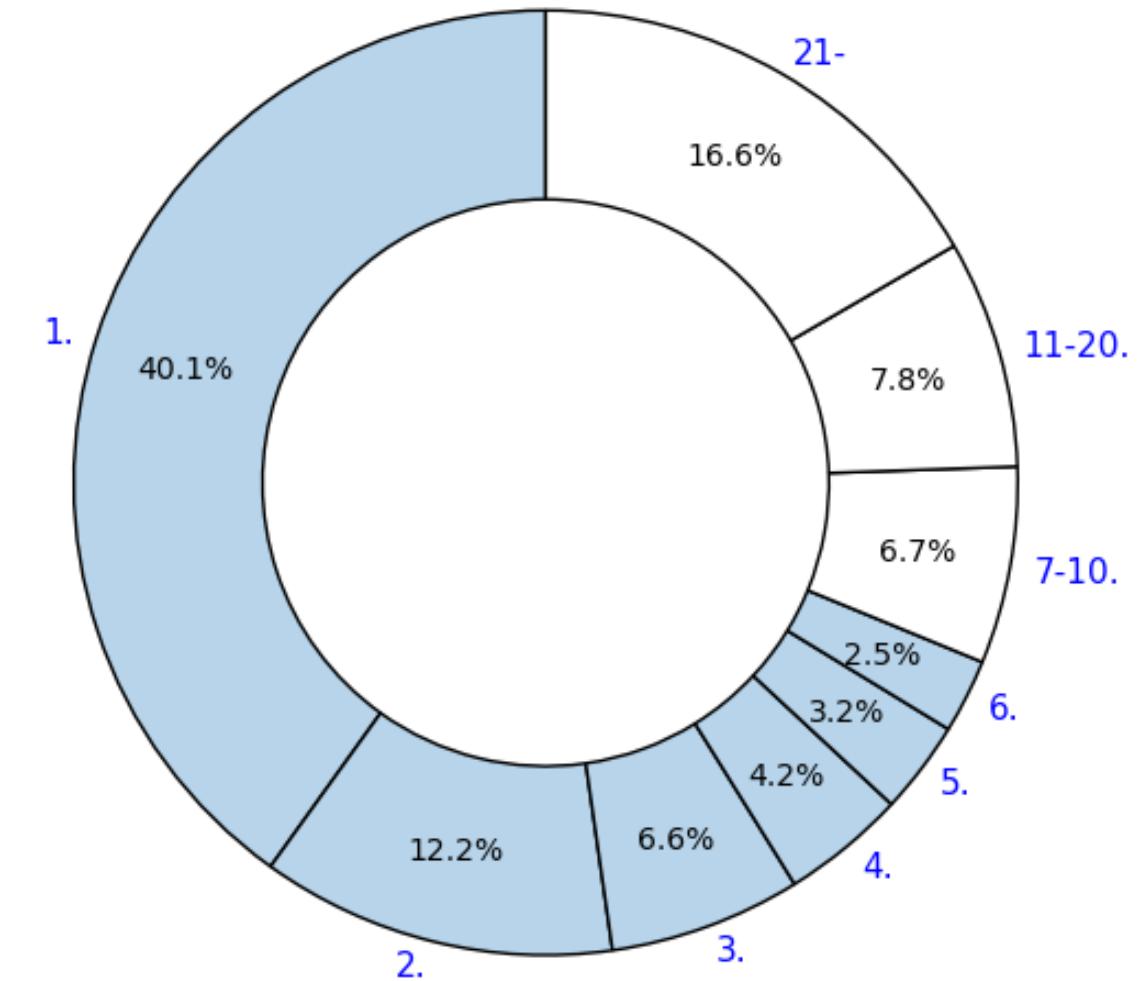
*This is what we optimized for!

Grouping NACE codes by their characteristic ranks



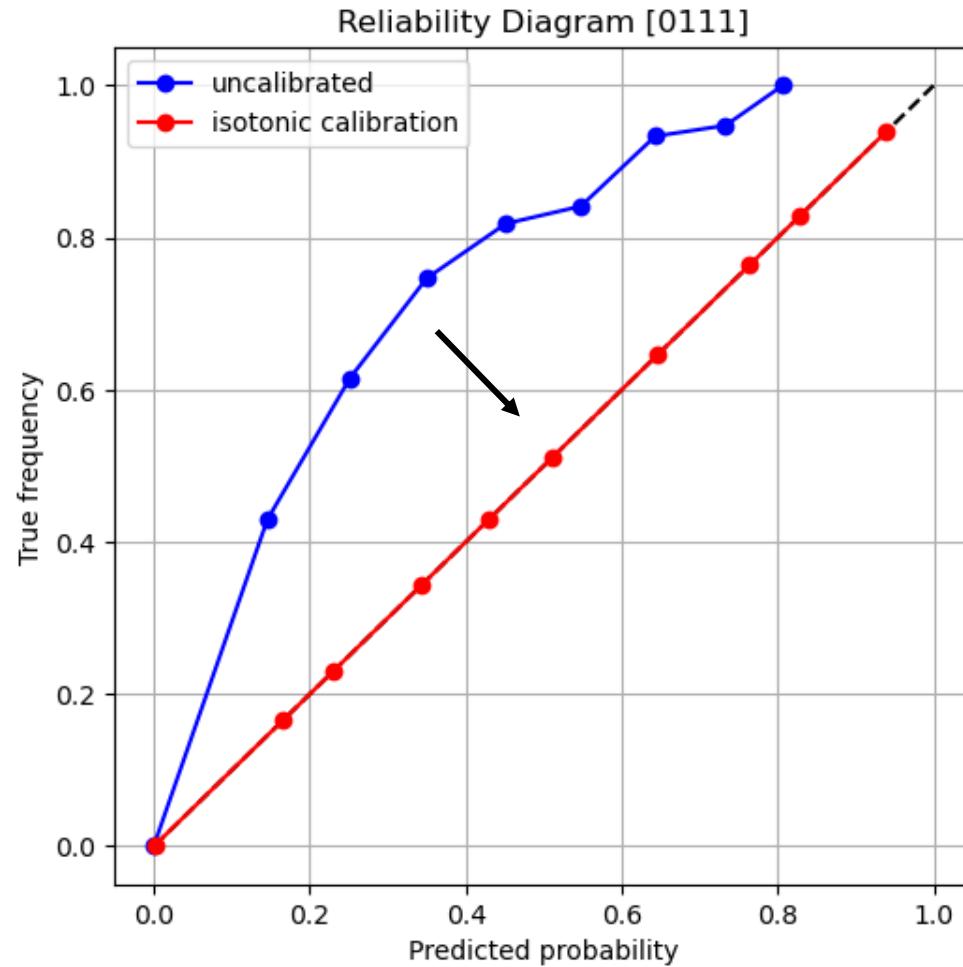
Taxpayer-focused ranks

Grouping taxpayers by the predicted rank of their NACE



Possible next steps:

- making probabilities more meaningful



- enrichment of rare NACE classes
- filtering outliers
- smarter ensembles
- predictive modelling for 2- and 3-digit NACE
- use of new domains
(e.g. text content of invoices)
- modelling for individual entrepreneurs

7. Deployment

- personalized suggestions in data requests
- data reconciliation procedures
- detection of anomalies
- usage in risk-scoring models

